²Ä¥|¤Q¤E¨÷(2020) shuYing - 2022-01-05
35.ºØ½Þ¹½®ñ¸z¹Dµß°ö¾iÅé¾Ç¤ÀªR¤§ªì±´

³¯¨Î¸©(1)¡@¼B©¾¾Ë(2)¡@·¨ªN(3)¡@§d©ú­õ(1)¡@¶À«Ø¾±(2)
(1)¦æ¬F°|¹A·~©e­û·|¯b²£¸ÕÅç©Ò¡@(2)°]¹Îªk¤H­¹«~¤u·~µo®i¬ã¨s©Ò¡@(3)ºÖ©÷ºØ½Þ³õ
¡@
¼vÅT±J¥D¸z¹D°·±d¤§ÃöÁä·L¥Íª«¦s¦b©ó¹½®ñÀô¹Ò¤¤¡A¤£©ö¦Û¸z¹D¤ÀÂ÷¡A¬G¸z¹Dµß°ö¾iÅé¾Ç§Þ³N¹ï©óµo®i·s¥@¥N¯q¥Íµß¬Û·í­«­n¡C¥»¸ÕÅç±Ä¶°§ù¬¥§JºØ¤½½Þ·sÂAÁT«K¼Ë¥»¡A¨Ï¥Î3ºØ¤£¦Pªº¹½®ñ°ö¾i±ø¥ó¶i¦æ¹½®ñ¸z¹Dµß¤§¤ÀÂ÷°ö¾i¡A¦A¥H°ò½è»²§U¹p®g²æªþ´åÂ÷­¸¦æ®É¶¡¦¡½èÃлö ¡]MALDI-TOF MS¡^ ©Î16S rRNA°ò¦]©w§Ç¡A§Ö³tŲ§O©Ò±o¤ÀÂ÷®è¡Cµ²ªGÅã¥Ü¡AÁ`­p¬D¿ïªñ500­Ó¤ÀÂ÷µß¸¨¡A¸g¹LÄ~¥N°ö¾i¡Bµß®è¯Â¤Æ©M¾Ç¦WŲ§O¡A³Ì«á±o¨ì20®è¤£¦PµßºØ§O¤§¤ÀÂ÷®è¡A³o¨Çµß®è¥D­n¤À§O¬°«p¾Àµßªù¡BÀÀ±ìµßªù¡B©ñ½uµßªù¡BÅܧεߪù»PSynergistetesªù¡A¨ä¤¤¦³¥|®èµLªk©w¸q¥XµßºØ¾Ç¦W¡A±À´ú¥i¯à¬O±q¥¼³Qµo²{ªº·s¿oµßºØ¡A¥¼¨Ó±N§Q¥Î¥þ°ò¦]Åé§Ç¦C¶i¦æ§ó¶i¤@¨Bªº¤ñ¹ï¤ÀªR¡A¨Ãµ²¦X¶Ç²Î¦h¬Û¤ÀÃþ§Þ³N¡AÂÇ¥H§¹¦¨·sºØªº´y­z»Pµoªí¡C
¡@
ÃöÁä»y¡G½Þ¸z¹Dµß¬Û¡B°ö¾iÅé¾Ç¤ÀªR¡B·L¥Íª«·sºØ


Preliminary study of gut microbiota in breeding pig using microbial culturomics analyses

C. H. Chen(1), J. S. Liou(2), C. Yang(3), M. C. Wu(1) and C. H. Huang(2)

(1)Livestock Research Institute, Council of Agriculture, Executive Yuan (2)Bioresource Collection and Research Center, Food Industry Research and Development Institute (3)Formosa Breeding Pig Farm

The host intestinal health may be affected by some crucial microorganisms, which are existed in the anaerobic environment and are difficult to isolate. Therefore, microbial culturomics technique for anaerobic intestinal microbiota is of great importance to the development of next-generation probiotics. The gut isolates include facultative and strict anaerobes that were isolated from pig feces samples under three different culture conditions. Nearly 500 isolated colonies were identified using MALDI-TOF MS (matrix-assisted laser desorption ionization time-of-flight mass spectrometry) combined with 16S rRNA sequencing, and successfully cultured 20 different bacterial species, which were belonged to the members of Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria and Synergistetes respectively. Among them, 4 new species have been discovered. These new taxa will be characterized and described by taxonogenomics approaches for proposing the novel species in the future.

Key Words: Swine gut microbiota, Culturomics, Microbial novel species




44.§Y®É»E¦X酶ÃìÂê¤ÏÀ³ÀË´ú§V¤ñ¨È¤s¦ÏÂH¦hÁÞ¯g¤§°ò¦]«¬¤ÀªR


44.§Y®É»E¦X酶ÃìÂê¤ÏÀ³ÀË´ú§V¤ñ¨È¤s¦ÏÂH¦hÁÞ¯g¤§°ò¦]«¬¤ÀªR

¦¶®a¼w(1)¡@ªL¼w¨|(1)¡@¿à¥Ã¸Î(1)¡@³¯­Yµ×(1)¡@§d©ú­õ(1)¡@±i¨qÆq(2)
(1)¦æ¬F°|¹A·~©e­û·|¯b²£¸ÕÅç©Ò¡@(2)°ê¥ß«ÌªF¬ì§Þ¤j¾Ç¡@

¤s¦ÏÂH¦hÁÞ¯g¡]Mucopolysaccharidosis, MPS¡^IIID«¬¡A¬O¤@ºØ¿ò¶Ç¯Ê³´©Ò¾É­Pªº¥NÁ©ʯe¯f¡CÂH¦hÁ޾ǦW¬°ÁÞÓi¦hÁÞglycosaminoglycans¡]GAGs¡^¡A¬OÅ餺§t¶q³ÌÂ×´Iªº¦hÁÞÅé¡F¦]GAGsªº·»²GºA¨ã¦³°ªÂH«×¡A¬GºÙ¬°ÂH¦hÁÞmucopolysaccharide¡C¥Ø«e¶È¦³³æ¤@«~ºØ§V¤ñ¨È¡]Nubian¡^¤s¦ÏªºGNS¡]N-acetylglucosamine-6-sulphatase,¤SºÙ G6S¡^°ò¦]¦bcDNA²Ä322­Ó®Ö苷»Ä¦³¤@¬ðÅÜÂI¡]C¡÷T¡^¡C¥»¸ÕÅç¤s¦Ï¥H5³õ¥Á¶¡ºØ¦Ï³õ·~ªÌ´£¨Ñ90ÀY§V¤ñ¨ÈºØ¦Ï¦å²G¬°¼Ë¥»¡A¹B¥Î¿Ã¥ú¤Þ¤l¡]FAM/HEX-labelled Primer¡^¼Ð°O¤§§Y®É»E¦X酶ÃìÂê¤ÏÀ³¶i¦æG6S°ò¦]«¬Å²§O¡A¤ÀªRÅã¥ÜG6S¥¿±`«¬¡BÂø¦X«¬¤Î¦³¯f«¬¤À§O¬°72.2%¡]65/90¡^¡B27.8%¡]25/90¡^¤Î0%¡]0/90¡^¡A¨Ã¶i¦æ¬ðÅÜÂI©îÂ÷¦¡»E¦X酶ÃìÂê¤ÏÀ³¡]MS-PCR¡^ÀË´ú»P°ò¦]¤ù¬q©w§Ç¡]DNA Sequencing¡^¤ñ¹ï§@·~¡Aµo²{3ªÌ§P©w¤§G6S°ò¦]«¬µ²ªG¬Û²Å¦X¡Cºî¦X¤W­z¡A¥H§Y®É»E¦X酶ÃìÂê¤ÏÀ³ÀË´ú§Þ³N°µ¬°§PÂ_§V¤ñ¨È¤s¦ÏÂH¦hÁÞ¯g¤§¥¿±`«¬¤Î¦³¯f«¬­ÓÅé¡A¥i¬°¥t¤@ºØ¨³³t§P©w¤s¦ÏGNSÂH¦hÁÞ¯g°ò¦]«¬¤§ÀË´ú¼Ò¦¡¡C
¡@
ÃöÁä»y¡G¤s¦Ï¡BÂH¦hÁÞ¯g¡B§Y®É»E¦X酶ÃìÂê¤ÏÀ³


Genotypic Analysis of Caprine Mucopolysaccharidosis Type IIID by Real-time PCR Platform

C. T. Chu(1), D. Y. Lin(1), Y. Y. Lai(1), J. C. Chen(1), M. C. Wu(1) and H. L. Chang(2)
¡@
(1)Taiwan Livestock Research Institute (2)National Pingtung University of Science and Technology

The mucopolysaccharidoses (MPSs) are a group of lysosomal storage disorders caused by deficiency of enzymes catalyzing the stepwise degradation of glycosaminoglycans (GAGs). A model of a Nubian goat with biochemical abnormalities and an enzyme deficiency resembling was found in the Sanfilippo syndrome type D, mucopolysaccharidosis IIID (MPS IIID). In Nubian goat MPS IIID, the G6S deficiency is associated with a single mutation, changing a C to T in the 322 nucleotide of the G6S cDNA sequence. Blood and DNA were obtained from five different farms (n=90) and were tested the G6S deficiency by Real-time PCR platform. The results showed the frequencies of AA, AB, and BB genotypes were 72.2% (65/90), 27.8% (25/90), and 0% (0/90), respectively. The polymorphism (C to T) detected by Mutagenically Separated PCR and DNA sequencing had the same genotypes by Real-time PCR. The genotype of caprine mucopolysaccharidosis type IIID by Real-time PCR could be one of the genotyping methods to effectively detect the G6S deficiency in Nubian goat.

Key Words: Nubian goat, G6S, Real-time PCR




45.§Y®É»E¦X酶ÃìÂê¤ÏÀ³ÀË´ú¤gÂûA-FABP°ò¦]Exon1ÂI¬ðÅܦhºA©Ê¤§°ò¦]«¬¤ÀªR


45.§Y®É»E¦X酶ÃìÂê¤ÏÀ³ÀË´ú¤gÂûA-FABP°ò¦]Exon1ÂI¬ðÅܦhºA©Ê¤§°ò¦]«¬¤ÀªR
¡@
¦¶®a¼w(1)¡@ªL¼w¨|(1)¡@¿à¥Ã¸Î(1)¡@³¯­Yµ×(1)¡@§d©ú­õ(1)¡@±i¨qÆq(2)
(1)¦æ¬F°|¹A·~©e­û·|¯b²£¸ÕÅç©Ò¡@(2)°ê¥ß«ÌªF¬ì§Þ¤j¾Ç

¦Ù¶¡¯×ªÕ§t¶q¡]Intramuscular Fat, IMF%¡^¬°¼vÅT¦Ù¦×¬X¹à«×¡]Tenderness¡^¡B¦h¥Ä©Ê¡]Juiciness¡^¡B®ð¨ý¡]Odor¡^¤Î­·¨ý¡]Flavor¡^ªºÃöÁä¼vÅT¦]¤l¤§¤@¡C¬ã¨s¤åÄm«ü¥X¡A¯×ªÕ细­M¯×ªÕ»Ä结¦X³J¥Õ¡]Adipocyte fatty acid binding protein, A-FABP¡^ÂI¬ðÅܯàÅãµÛ¡]P¡Õ0.05¡^¼vÅT¥_¨ÊªoÂû¤½Âû»L¦×»PÂû¯Ý¦Ù¶¡¯×ªÕ§t¶q¡C¥»¸ÕÅç¥H³ÍÄɮۤB¤gÂû¡]n=30¡^¡B¶Â¦Ð¤gÂû¡]n=30¡^¤Î¯Q°©Âû¡]n=30¡^¬°¼Ë¥»¡A¹B¥Î¿Ã¥ú¤Þ¤l¡]FAM/HEX-labelled Primer¡^¼Ð°O¤§§Y®É»E¦X酶³sÂê¤ÏÀ³¡]Real-time PCR¡^°ò¦]«¬ÀË´ú§Þ³N¡AÀË´ú¤T­Ó«~ºØ¤gÂûA-FABP°ò¦]Exon1ÂI¬ðÅܦhºA©Ê¤§°ò¦]«¬¡Aªì¨Bµ²ªGµo²{³ÍÄɮۤB¤gÂû¡B¶Â¦Ð¤gÂû¤Î¯Q°©ÂûªºC¥æ´À°ò¦]ÀW²v¤À§O¬°0.85¡B0.38¤Î0.85¡C«áÄò±NA-FABP°ò¦]Exon1ÂI¬ðÅܤ§°ò¦]«¬»P¤gÂûÂû¯Ý¦×»P»L¦×¦Ù¶¡¯×ªÕ§t¶q¶i¦æ²Î­p¤ÀªR¡A¥H½T©w¦¹ÂI¬ðÅܬO§_¬°¼vÅT¤gÂû¯Ý¦×»P»L¦×¦Ù¶¡¯×ªÕ§t¶q¤§¦³§Q°ò¦]¡C

ÃöÁä»y¡G¤gÂû¡B¯×ªÕ细­M¯×ªÕ»Ä结¦X³J¥Õ¡B§Y®É»E¦X酶ÃìÂê¤ÏÀ³


Genotypic Analysis of Single Nucleotide Polymorphism on Exon1 of A-FABP Gene in Indigenous Chicken by Real-time PCR platform
¡@
C. T. Chu(1), D. Y. Lin(1), Y. Y. Lai(1), J. C. Chen(1), M. C. Wu(1) and H. L. Chang(2)
¡@
(1)Taiwan Livestock Research Institute (2)National Pingtung University of Science and Technology

The intramuscular fat (IMF) content in muscles is one of the most important underlying factors for tenderness, juiciness, odor, and flavor of the meat. A-FABP, which affects the transport, uptake, esterification, and mitochondria of fatty acids, is a member of the fatty acid binding protein (FABP) multigene family and plays an essential part in the transfer of intracellular fatty acids through binding lipids and metabolism. Beijing-You chickens inheriting the homozygous BB genotype at A-FABP had a significantly higher content of IMF in thigh muscles and breast muscles than did those inheriting the AA and AB genotypes. DNA obtained from Kaishing Guiding Native Chicken (n=30), Black Feather Native Chicken (n=30), and Silkie Bantam (n=30) were tested single nucleotide polymorphism on exon1 of A-FABP gene by Real-time PCR platform. The results showed that allele C frequencies were 0.85, 0.38, and 0.85, respectively, in indigenous chicken (Kaishing Guiding, Black Feather, and Silkie Bantam). Further, We will proceed with the statistical analyses to identify the polymorphism of A-FABP associated with the intramuscular fat content in muscles.

Key Words: Indigenous chicken, A-FABP, Real-time PCR




46.§Y®É»E¦X酶ÃìÂê¤ÏÀ³ÀË´ú¤gÂûH-FABP °ò¦]Intron2 ÂI¬ðÅܦhºA©Ê¤§°ò¦]«¬¤ÀªR


46.§Y®É»E¦X酶ÃìÂê¤ÏÀ³ÀË´ú¤gÂûH-FABP °ò¦]Intron2 ÂI¬ðÅܦhºA©Ê¤§°ò¦]«¬¤ÀªR
¡@
¦¶®a¼w(1)¡@ªL¼w¨|(1)¡@¿à¥Ã¸Î(1)¡@³¯­Yµ×(1)¡@§d©ú­õ(1)¡@±i¨qÆq(2)
(1)¦æ¬F°|¹A·~©e­û·|¯b²£¸ÕÅç©Ò¡@(2)°ê¥ß«ÌªF¬ì§Þ¤j¾Ç
¡@
¦Ù¶¡¯×ªÕ§t¶q¡]Intramuscular Fat, IMF%¡^¬°¼vÅT¦Ù¦×¬X¹à«×¡]Tenderness¡^¡B¦h¥Ä©Ê¡]Juiciness¡^¡B®ð¨ý¡]Odor¡^¤Î­·¨ý¡]Flavor¡^ªºÃöÁä¼vÅT¦]¤l¤§¤@¡C¬ã¨s¤åÄm«ü¥X¡A¤ßŦ«¬¯×ªÕ»Ä结¦X³J¥Õ¡]Heart-type fatty acid binding protein, H-FABP¡^ÂI¬ðÅܯàÅãµÛ¼vÅT«Ê¶}§öªáÂû¡B´f¶§ÄGŽÂû¡B¼s¦èÁøýçÂû¡BÀ­«n¶ÀÂû¡B²M»·³ÂÂû¤Î¨Ü¾§Âûµ¥¤¤°ê¥»¤gÂû°¦»P·R©Þ¯q¥[°Ó¥Î¦×Âû«~ºØÂû¯Ý¦Ù¶¡¯×ªÕ§t¶q¡C¥»¸ÕÅç¥H³ÍÄɮۤB¤gÂû¡]n=26¡^¡B¶Â¦Ð¤gÂû¡]n=30¡^¤Î¯Q°©Âû¡]n=30¡^¬°¼Ë¥»¡A¹B¥Î¿Ã¥ú¤Þ¤l¡]FAM/HEX-labelled Primer¡^¼Ð°O¤§§Y®É»E¦X酶³sÂê¤ÏÀ³¡]Real-time PCR¡^°ò¦]«¬ÀË´ú§Þ³N¡AÀË´ú¤T­Ó«~ºØ¤gÂûH-FABP°ò¦]Intron2ÂI¬ðÅܦhºA©Ê¤§°ò¦]«¬¡Aªì¨Bµ²ªGµo²{³ÍÄɮۤB¤gÂû¡B¶Â¦Ð¤gÂû¤Î¯Q°©ÂûªºC¥æ´À°ò¦]ÀW²v¤À§O¬°0.54¡B0.33¤Î0.23¡C«áÄò±NH-FABP°ò¦]Intron2ÂI¬ðÅܤ§°ò¦]«¬»P¤gÂûÂû¯Ý¦×»P»L¦×¦Ù¶¡¯×ªÕ§t¶q¶i¦æ²Î­p¤ÀªR¡A¥H½T©w¦¹ÂI¬ðÅܬO§_¬°¼vÅT¤gÂû¯Ý¦×»P»L¦×¦Ù¶¡¯×ªÕ§t¶q¤§¦³§Q°ò¦]¡C

ÃöÁä»y¡G¤gÂû¡B¤ßŦ«¬¯×ªÕ»Ä结¦X³J¥Õ¡B§Y®É»E¦X酶ÃìÂê¤ÏÀ³
¡@

Genotypic Analysis of Single Nucleotide Polymorphism on Intron2 of H-FABP Gene in Indigenous Chicken by Real-time PCR platform

C. T. Chu(1), D. Y. Lin(1), Y. Y. Lai(1), J. C. Chen(1), M. C. Wu(1) and H. L. Chang(2)
¡@
(1)Taiwan Livestock Research Institute (2)National Pingtung University of Science and Technology

The intramuscular fat (IMF) content plays a very important role in flavour, tenderness and juiciness for chicken meat, and a higher content of IMF means higher quality chickens. H-FABP is a cytosolic protein found in heart, muscle, and lactating mammary gland. This protein is the only FABP expressed in various muscle tissues. A single nucleotide polymorphisms (SNP) of chicken H-FABP gene were significantly associated with IMF content in Chinese domestic chicken breeds (Fengkai Xinghua, Huiyang Huxu, Qingyuan Ma, Guangxi Xiayan, Lingnan Huang, dwarf chicken) and broiler (Abor Acre). DNA obtained from Kaishing Guiding Native Chicken (n=26), Black Feather Native Chicken (n=30), and Silkie Bantam (n=30) were tested single nucleotide polymorphism on Intron2 of H-FABP gene by Real-time PCR platform. The results showed that allele C frequencies were 0.54, 0.33, and 0.23, respectively, in indigenous chicken (Kaishing Guiding, Black Feather, and Silkie Bantam). Further, We will proceed with the statistical analyses to identify the polymorphism of H-FABP associated with the intramuscular fat content in muscles.
¡@
Key Words: Indigenous chicken, H-FABP, Real-time PCR




84.¯b¸Õ©ÒÂŴ߯Q°©Âû¤§·L½Ã¬P¿ò¶Ç¼Ð°O¦hºA©Ê¤ÀªR


84.¯b¸Õ©ÒÂŴ߯Q°©Âû¤§·L½Ã¬P¿ò¶Ç¼Ð°O¦hºA©Ê¤ÀªR
¡@
ªL¼w¨|(1) ´¿²Q­s(2) ¼B¾åÀs(1) ¿à¥Ã¸Î(1) ½²»Ê¬v(1) ¬x­õ©ú(1) §d©ú­õ(1)
(1)¦æ¬F°|¹A·~©e­û·|¯b²£¸ÕÅç©Ò (2)¤¤µØÂå¨Æ¬ì§Þ¤j¾Ç
¡@
¬°µû¦ô¦æ¬F°|¹A·~©e­û·|¯b²£¸ÕÅç©ÒÂÅ´ß³J¯Q°©Âû¿ï¨|±Ú¸sªº¿ò¶ÇÅܲ§¡A¥»¸ÕÅç§Q¥ÎFAO(2010)«Øij¨Ï¥Îªº24²ÕÂû·L½Ã¬P¼Ð°O²Õ¤ÀªR117°¦ÂÅ´ß³J¯Q°©Âû²ÄG4¥@¥NºØÂû­ÓÅéDNA¡C¨ä¤¤°£MCW0103¡BMCW0216¤ÎMCW0248·L½Ã¬P¼Ð°O©ÒÀË´úªº°ò¦]«¬¦b©Ò¦³ÀË´ú­ÓÅé¬Ò¬°³æ«¬¥~¡A¨ä¥¦21²Õ·L½Ã¬P¼Ð°O¬Ò¦³¦hºA«¬ªº°ò¦]«¬¡C¦@ÀË´ú¨ì87­Ó¹ï°¸°ò¦]¡A¥­§¡¨C­Ó°ò¦]®y¨ã¦³3.5­Ó¹ï°¸°ò¦](1~13)¡F¨ä´Á±æ²§½è«×¤¶©ó0¨ì0.774¡A¥­§¡¬°0.422¡AÆ[´ú²§½è«×¤¶©ó0¨ì0.778¡A¥­§¡¬°0.372¡A¦Ó¦hºA©Ê°T®§§t¶q¤¶©ó0¨ì0.735¡A¥­§¡¬°0.377(ªí26)¡C¦b¿ï¥Îªº24²Õ·L½Ã¬P¼Ð°O²Õ¤¤¦³10 ²Õ§e²{°ª«×¦hºA©Ê¸ê°T(PIC ≥ 0.50)¡A¦³5²Õ§e²{¤¤«×¦hºA©Ê¸ê°T(0.50> PIC ≥ 0.25)¡A9²Õ§e²{§C«×¦hºA©Ê¸ê°T(PIC < 0.25)¡C¥»µ²ªG´£¨Ñ¦¹¿ï¨|±Ú¸s¿ò¶ÇÅܲ§¤§°ò¥»¤À¤l¸ê°T¡C

ÃöÁä»y¡G¯Q°©Âû¡B·L衞¬P¿ò¶Ç¼Ð°O¡B¦hºA©Ê
¡@
¡@
Polymorphism analysis of LRI blue egg silkie chicken by microsatellite markers
¡@
D. Y. Lin(1), S. J. Tzeng(2), H. L. Liu(1), Y. Y. Lai(1), M. Y. Tsai(1) , C. M. Hung(1) and M. C. Wu(1)

(1)Livestock Research Institute(LRI), Council of Agriculture (2)Chung Hwa University of Medical Technology
¡@
In order to evaluate genetic variation of LRI blue egg silkie chicken flock. we use a set of 24 microsatellite markers recommended by FAO to analyze 117 candidate bred chickens from this flock. Except MCW0103, MCW0216 and MCW0248, all the microsatellites were polymorphic. The average allelic number 3.5, ranged from 1 to 13 per locus. The expected heterozygosity ranged from 0 to 0.774, and the average expected heterozygosity was 0.422. The observed heterozygosity of the population ranged from 0 to 0.778, and the average observed heterozygosity was 0.372. The polymorphic information content (PIC) ranged from 0 to 0.774, and the average PIC was 0.491. In 24 markers, 10 markers were highly informative with polymorphism information content (PIC ≥ 0.50), five markers were reasonably informative(0.5 > PIC ≥ 0.25) and the other nine markers were slightly informative (PIC < 0.25). These results could be provided basic molecular information for the research on the germplasm characteristics of the population.

Key Words: Silkie chicken, Microsatellite marker, Polymorphism




85.¯b¸Õ©ÒÂŴ߯Q°©Âû¿ï¨|±Ú¸s¤§®a¸V¥Õ¦å¯f J ¯f¬rºÊ´ú


85.¯b¸Õ©ÒÂŴ߯Q°©Âû¿ï¨|±Ú¸s¤§®a¸V¥Õ¦å¯f J ¯f¬rºÊ´ú
¡@
ªL¼w¨|(1)¡@´¿²Q­s(2)¡@¼B¾åÀs(1)¡@½²»Ê¬v(1)¡@¿à¥Ã¸Î(1)¡@¦¶®a¼w(1)¡@§d©ú­õ(1)
(1)¦æ¬F°|¹A·~©e­û·|¯b²£¸ÕÅç©Ò¡@(2)¤¤µØÂå¨Æ¬ì§Þ¤j¾Ç
¡@
®a¸V¥Õ¦å¯f ¡]avian leucosis, AL¡^ ¬O¥Ñ®a¸V¥Õ¦å¯f¯f¬r ¡]avian leucosis virus, ALV¡^ ¤Þ°_¡A¨ä¤¤ªº J ¨È¸s ¡]subgroup J ALV¡FALV-J¡^ ©ó 1989 ¦~¥X²{¡A³y¦¨¾iÂû·~ªÌªºÄY­«·l¥¢¡C¬°¤F¸Ñ¦æ¬F°|¹A·~©e­û·|¯b²£¸ÕÅç©ÒÂŴ߯Q°©Âû¿ï¨|±Ú¸sºØÂû¸s¬O§_·P¬V®a¸V¥Õ¦å¯f J ¯f¬r¡A©ó¥» ¡]2020¡^ ¦~¶i¦æ¥þ³õ¿ï¨|±Ú¸s315°¦­Ô¿ïºØÂû¤§®a¸V¥Õ¦å¯f J ¯f¬r¿zÀË¡C¥H§t§Ü¾®¾¯ EDTA-K3¤§±Ä¦å¾¹±Ä¶°Âû°¦ÁlÀR¯ß 2 ²@¤É¥þ¦å¡A¥H®Ö»ÄµÑ¨ú¸Õ¾¯¶i¦æ®Ö»ÄµÑ¨ú«á¡A¶i¦æ PCR ¡]primer H5/H7¡^ ÀË´ú®a¸V¥Õ¦å¯f J ¯f¬r¡CÀË´úµ²ªG¦b©Ò¦³°eÀ˼˫~¬Ò§e³±©Ê¤ÏÀ³¡AÅã¥Ü¸Ó¿ï¨|±Ú¸s¬°¤@®a¸V¥Õ¦å¯f J ¯f¬r²M²b±Ú¸s¡C

ÃöÁä»y¡G¯Q°©Âû¡B®a¸V¥Õ¦å¯f¡B®a¸V¥Õ¦å¯fJ¯f¬r¡BºÊ´ú


Avian leucosis J-virus monitoring in the selection population of LRI blue egg silkie chicken

D. Y. Lin(1), S. J. Tzeng(2), H. L. Liu(1), M. Y. Tsai(1), Y. Y. Lai(1), C. T. Chu(1) and M. C. Wu(1)
¡@
(1)Livestock Research Institute (LRI), Council of Agriculture (2)Chung Hwa University of Medical Technology

Avian leucosis is caused by avian leucosis viruses (ALVs) are prevalent in the poultry industry worldwide and cause severe economic losses. The subgroup J of ALV (ALV-J) has emerged as an important pathogen of meat-type chickens since 1989 and causes serious economic losses in poultry industry. In order to monitor ALV-J disease in the selection population of LRI blue egg silkie chicken, we collected blood samples of candidate breeder chicken by the blood collection device with anticoagulant EDTA-K3 in 2020. The DNAs of 315 silkie chicken blood samples were extracted with nucleic acid extraction reagent and the primer kits (H5/H7) was used for ALV-J PCR detection. All of the detected samples were ALV-J negative. It shows that the selection population of LRI blue egg silkie chicken is an avian leukemia J virus free population.

Key Words: Silkie chicken, Avian leucosis, Avian leucosis J-virus(ALV-J), Monitoring




90.¨Å¤û³õIOTª«Ápºô«Ø¸m¤§¬ã¨s


90.¨Å¤û³õIOTª«Ápºô«Ø¸m¤§¬ã¨s
¡@
±ä¥þ°¶(1)¡@§d©ú­õ(1)¡@³¯©Éæ¢(2)¡@¸­¥çÄÉ(2)¡@³¯°êºÕ(3)¡@§ù®a·ç(4)
(1)¦æ¬F°|¹A·~©e­û·|¯b²£¸ÕÅç©Ò¡@(2)¦æ¬F°|¹A·~©e­û·|¯b²£¸ÕÅç©Ò·s¦Ë¤À©Ò¡@(3)©M¯þºØ¤û³õ¡@(4)ª«Áp´¼¼zªÑ¥÷¦³­­¤½¥q
¡@
¨Å¤û³õ¨C¤éÀ½¨Å¡BÁý¾i¤Î²M¼ä¤u§@¬Ò»Ý¨Ï¥Î¤j¶qªº¤ô»P¹q¡A¹ï©ó³]³Æªº¥Î¹q¶q¸ê°T»P¯bªÙªº¥Î¤ô¶q¸ê°T­YµLªk´x´¤¡A±N¨S¦³ªª³õºÞ²zªº·N¸q¡C¥»¬ã¨s¾É¤JIoTª«Ápºô¦Ü¨Å¤û³õ¤¤¡A¸Ë³]¨ã³ÆWi-Fi¶Ç¿é¥\¯à»PIP65¨¾¤ô¨¾¹Ðµ¥¯Å¥H¤Wªº¼Æ¦ì¤ô¿ö»P¼Æ¦ì¹q¿ö¡A©w®É¦¬¶°¤ûªÙªº¼o¤ô±Æ©ñ¶q¡]³æ¦ì¡G¤½¤É¡^¤ÎÀ½¨Å³]³Æªº¥Î¹q¶q¡]³æ¦ì¡G«×¡^¡A¥HµL½uºô¸ô¶Ç¿é¨ì²{³õªº¸ê®Æ¦¬¶°³nÅé¡]Modbus¡^¡A¦A³z¹LHttp¨ó©w©I¥sAPIÀ³¥Îµ{¦¡¤¶­±±N©Ò¦¬¶°ªº¤ô¹q¸ê®Æ¡AÂà´«¦¨JSON¸ê®Æ¥æ´«®æ¦¡¡A¦^¼g¦Ü¯b²£¸ÕÅç©Ò¥Í¨Å¸ê®Æ¥­¥x¡C¸Ó¥­¥x´£¨Ñªª³õºÞ²z¤H³z¹L¦æ°Ê¸Ë¸m©Î¹q¸£¦s¨ú³õ°ì¥Î¤ô»P¥Î¹q¸ê°T¡A¸ê®Æ¼Æ¦ì¤Æ¤§«á¡Aªª³õºÞ²z¤H¯à´x´¤¨C¤éªº¥Î¹q¸ê°T¡A¹ï©ó²§©ó¥Î¹q±¡ªp«K¯à¨³³t¬dı¡F¥t¥~ªª³õ¤H­û¨C¤é»Ý§Û¼g¼o¤ô±Æ©ñ¶qªº¤u§@§ï¥Ñ¨t²Î¦Û°Ê°O¿ý¡A¯àÁקK§Ñ°O§Û¿ö©Î§Û¿ù¸ê®Æªº±¡ªpµo¥Í¡C

ÃöÁä»y¡G¨Å¤û³õ¡Bª«Ápºô¡B·P´ú¾¹


Research on the establishment of Internet of Things in dairy farms
¡@
C. W. Tsao(1), M. C. Wu(1), Y. H. Chen(2), Y. H. Yeh(2), G. J. Chen(3) and C. J. Tu(4)

(1)Livestock Research Institute, COA, Executive Yuan. (2)Hsinchu Branch, Livestock Research Institute, COA, Executive Yuan. (3)HeQuag Dairy Breeding Farm (4)ThroughTek Co., Ltd.
¡@
Daily milking, feeding and cleaning jobs in dairy farms require large amounts of water and electricity. If it is impossible to get the power consumption of the equipment and the water consumption of the livestock house, the farm management is not actually a fact. This research applies the Internet of Things architecture to a dairy farm, and installs digital water sensors and digital electric sensors with Wi-Fi function and over IP65 waterproof and dustproof level. These sensors regularly collect the waste water discharge with liter unit and the electricity consumption of the milking equipment with degree unit, and the gained data is transported via Wi-Fi network to a collection software, called Modbus. Modbus could convert the collected water and electricity consumption data into JSON exchange format, and then calls the application program interface through Http protocol, and writes data back to the data platform for dairy farms. This platform provides farm managers with access to water and electricity information through mobile devices or computers. After the data is digitized, the farm managers can grasp the daily electricity consumption information and quickly find the abnormal situation in electricity usage. In addition, the daily work of the employee to transcribe the waste water discharge amount is automatically recorded by the system, which can avoid the situation of forgetting or transcribing the wrong information.
¡@
Key Words: Dairy farm, Internet of Things, Sensors




100.ºØ½ÞÅ髬¡B¸}¿áµûŲ»P©ÓÁÊ»ùÃö³s©Ê±´°Q


100.ºØ½ÞÅ髬¡B¸}¿áµûŲ»P©ÓÁÊ»ùÃö³s©Ê±´°Q
¡@
¦¶¥©­Å(1)¡@ÃC©À·O(1)¡@³¯¨Î¸©(1)¡@§d©ú­õ(1)¡@ªL¥¿²»(2)¡@¼B®Û¬W(3)
(1)¦æ¬F°|¹A·~©e­û·|¯b²£¸ÕÅç©Ò¡@(2)°]¹Îªk¤H¤¤¥¡¯b²£·|¡@(3)»OÆW°ÏºØ½Þ²£·~¨ó·|
¡@
¥»¸ÕÅç¥Øªº¬°±´°QºØ½ÞÅ髬»P¸}¿áµûŲµ²ªG¬O§_¼vÅTºØ½Þ©ç½æ¼ÐÁʪ̥X»ù·NÄ@¡C§¹ÀË¥B«ü¼Æ¦X®æºØ½Þ¨Ì¾Ú«~ºØ©Ê§O¤À²Õ¶i¦æÅ髬µûŲ¡AÅ髬µûŲ¤J¿ï2ÀY¡]§t¡^¥H¤W¤§²Õ§O¤~¶i¦æ¸}¿áµû¤À¡C¸ÕÅç½Þ°¦¬°¦Û2011¦~3¤ë23¤é¦Ü2020¦~9¤ë23¤é¡A¤¤¥¡ÀË©w¯¸§¹Àˤ§¸}¿áµû¤À²Ä¤@¦WºØ½Þ¦@245ÀY¡A¥]§t§ù¬¥§J¤½½Þ76ÀY»P¥À½Þ19ÀY¡BÂÅ·ç´µ¤½½Þ75ÀY»P¥À½Þ32ÀY¤Î¬ù§J®L¤½½Þ42ÀY»P¥À½Þ1ÀY¡A¤ñ¸û¸}¿áµû¤À²Ä¤@¦W¡BÅ髬µûŲ¤J¿ï¤Î¥¼¤J¿ïÅ髬µûŲºØ½Þ¤TªÌ¤§¶¡©ÓÁÊ»ù¤Î¦¨¥æ¦Ê¤À¤ñ¤§Ãö³s©Ê¡C¥»¬ã¨sµ²ªGÅã¥ÜÅ髬µûŲ¤J¿ï¤Î¸}¿áµû¤À²Ä¤@¦WºØ½Þªº©ÓÁÊ»ù¤Î¦¨¥æ¦Ê¤À¤ñÅãµÛ°ª©ó¥¼¤J¿ïÅ髬µûŲºØ½Þ¡AÅã¥ÜÅ髬µûŲ¤Î¸}¿áµû¤Àµ²ªG¬O¼vÅT¼ÐÁʪ̩ÓÁÊ·NÄ@ªº¦]¯À¤§¤@¡C

ÃöÁä»y¡GºØ½Þ¡BÅ髬µûŲ¡B¸}¿áµû¤À


The investigation of relationships among the hoof evaluation, body-type evaluation, and bidding price of breeding pigs
¡@
C. C. Chu(1), N. T. Yen(1), C. H. Chen(1), M. C. Wu(1), C. H. Lin(2) and K. C. Liu(3)

(1)Livestock Research Institute, Council of Agriculture, Executive Yuan (2)National Animal Industry Foundation (3)Formosan Farmers Association for Swine Improvement

This research is conducted to investigate whether the hoof evaluation results of breeding pigs will affect the bidding willingness of bidders. After the performance examination, the index-qualified breeding pigs were grouped by breeds and gender for the body-type evaluation. Once, more than two pigs were selected, the hoof evaluation will be implemented. The performance test period was from March 23, 2011, to September 23, 2020. Totally, there were 245 pigs in top rank after the hoof evaluation in Central Performance Test Station, and 76 Duroc boars, 19 Duroc gilts, 75 Landrace boars, 32 Landrace gilts as well as 42 Yorkshire boars, 1 Yorkshire gilts included. Therefore, we would like to find out the relations of the bidding price and sales rate among pigs from the top rank of hoof evaluation, qualified for body-type evaluation, and unqualified for body-type evaluation. The result indicated that both the bidding price and sales rate were higher in the pigs from the groups of the top rank of hoof evaluation and qualified for body-type evaluation than the group of unqualified for body-type evaluation. It demonstrated that the bidding willingness of bidders was affected by the results of hoof evaluation and body-type evaluation of breeding pigs.
¡@
Key Words: Breeding pig, Body-type evaluation, Hoof evaluation




107.¯b²£ºØ­ìºûÅ@«O¦sªº²{¦b»P¥¼¨Ó


107.¯b²£ºØ­ìºûÅ@«O¦sªº²{¦b»P¥¼¨Ó
¡@
Á¨ήe(1) ¿à¥Ã¸Î(1) §d©ú­õ(1)
(1)¦æ¬F°|¹A·~©e­û·|¯b²£¸ÕÅç©Ò¿ò¶Ç¨|ºØ²Õ

®ð­ÔÅܾE»P¬Ì¯f¾î¦æ¬O¹ï¥þ²y¯bªª²£·~ªºÄY®m¦ÒÅç¡A¦Ó¦U°ê­±¹ï¦¹¬D¾Ô°£¤F¥[³t¹ï©ó­@ °f¹Ò«~¨tªº¿ï¨|¤Î¹}¾iºÞ²zªº½Õ¾ã¥~¡A§ó¬O¥H§¹³ÆªººØ­ì®w§@¬°ºØ­ìºûÅ@»P«O¦sªº³Ì«á ¤@¹D¨¾½u¡CÁp¦X°ê¹A³²Õ´¡]Food and Agriculture Organization of the United Nations¡^¤] ¦³´£¨Ñ¤@¨t¦Cªº«ü¤Þ¡A¨Ñ¦U°ê§@¬°¨ä¦b¦a¯b²£ºØ­ìºûÅ@¤§°Ñ¦Ò¡C¥xÆW¯b²£ºØ­ì¤¤¤ß©ó 2004 ¦~±Ò¥Î¡A¥Ñ­á¦s¤¤¤ß»PDNA ®w©Ò²Õ¦¨¡A¨ä¤¤¦¬¯Ç¤F¯b²£¸ÕÅç©Ò¦b¹L¥h¼Æ¤Q¦~¶¡°ö ¨|ªºÀu½è¯b¸V«~ºØ¡A¥]§t¶À¤û¡B¤ô¤û¡B½Þ¡B¤s¦Ï»PÂûµ¥ª«ºØ¡C°£¤F¥HºØ­ì®w«O¦s¯b²£ºØ ­ì¡A¿n·¥¬¡¤ÆÀ³¥ÎºØ¯b¸V¸ê·½»PºØ­ì®w¬O¯b²£ºØ­ìºûÅ@ªº¤U¤@¨B¡C±©¦³Åý¤j²³¤F¸Ñ¯b²£ ºØ­ìªº±o¤§¤£©ö¡A¦b¦aºØ­ì¦b¯bªª²£·~¤Î¥Íª«¦h¼Ë©Ê¤W§êºt­«­nªº¨¤¦â¡A¨Ã«P¨Ï·~ªÌ¤@ ¦P§ë¤JºØ¯b¸VªºÀ³¥Î¡A¤è¯à¨Ï¯b²£ºØ­ìªººûÅ@»P«O¦s¯à¥ÃÄò¸gÀç¡C

ÃöÁä»y¡G¯b²£°Êª«¡BºØ¯b¡BºØ­ìºûÅ@¡BºØ­ì®w¡B¥Íª«¦h¼Ë©Ê


The present and future of the maintenance and preservation of breeding stocks

C. J. Hsieh(1), Y. Y. Lai(1) and M. C. Wu(1)
¡@
(1)Division of Breeding and Genetics, Livestock Research Institute, COA

Climate change and epidemic disease are critical challenges for the worldwide animal industries. In order to cope with these challenges, it is necessary to accelerate the breeding of anti-adversity lines and to adjustment the husbandry management. Also, the complete animal germplasm bank is the last line of defense for breeding stock maintenance and preservation. Furthermore, FAO provides a serial of guidelines to guide the countries for their local breeding stock germplasm preservation. Taiwan Animal Germplasm Center (TAGC) was established in 2004, and it was constituted by the cryopreservation center and DNA bank. The collections of farm animal germplasm in TAGC were from the elite breeding stocks which Taiwan Livestock Research Institute (TLRI) bred for decades, including yellow cattle, buffalo, pig, goat, chicken, etc. Besides preserving the germplasm of farm animals in the animal germplasm bank, applying the genetic resource of breeding stock and animal germplasm bank actively is the next step. Ultimately, it is important to let people know that precious local animal germplasms play significant roles in the animal industry and biodiversity, as well as to invite the farm owns to involve in the applications of breeding stocks, to make the breeding stock germplasm sustainably maintain and preserve.
¡@
Key Words: Farm animal, Breeding stock, Germplasm preservation, Germplasm bank, Biodiversity
¥xÆW¯b²£ºØ­ìª¾ÃÑ®w - https://agrkb.angrin.tlri.gov.tw